
w w w . s e q r i t e . c o m

Author:
Sathwik Ram Prakki ,
Rayapati Lakshmi Prasanna Sai

W H I T E P A P E R

New Warp Malware
drops modified
Stealerium Infostealer

P. 01

Introduction

Warp is a potent malware written in the GO programming language, designed to load payloads
and ex-filtrate sensitive information via Telegram. As new variants emerge daily in the current
threat landscape to steal sensitive information from infected systems, the presence of Warp
poses a significant risk to system security and privacy, necessitating its prompt removal from
affected systems by the victims.

Loaders, droppers, and stealers are typically components of a larger malware ecosystem. They
are often used with other malicious modules, making malware attacks more sophisticated and
potent. Warp malware is one of the best examples of this type of attack. This malware drops a
stealer to steal user-sensitive information and send it to the attacker using Telegram as a
medium.

P. 02

A loader and a stealer are components commonly found in malware but serve different
purposes. Let us provide you with a brief introduction to each of them:

A loader, also known as a dropper, is a malware component designed to
deliver and execute other malicious payloads onto a victim’s system. Its
primary function is to bypass security mechanisms and initiate the
infection process. It may connect to a command-and-control (C&C) server
to receive instructions or download additional malware modules. Once the
loader has successfully loaded and executed the intended payload, it
hands over control to the main malware module, which may be
ransomware, banking trojan, or any other malicious software.

A stealer, or information stealer, is a type of malware specifically designed
to collect sensitive information from an infected system. Its primary
objective is to steal valuable data, such as login credentials, financial
information, personal details, or any other information that attackers can
monetize or exploit.

Stealers often employ different techniques to gather data. They may
search for saved passwords, browser cookies, stored credit card
information, email credentials, or sensitive files on the victim’s machine.
Some advanced stealers can also capture keystrokes or take screenshots
to gather additional data. Once the information is collected, it is typically
encrypted and ex-filtrated to a remote server controlled by the attackers.

Brief about Loader
and Stealer

1. Loader/Dropper

2. Stealer

P. 03

The loader binary is a 64-bit Go-based executable file masquerading as ‘Adobe Self Extractor’
and ‘Adobe Acrobat Update’ with no compilation timestamp. The file size (4.96 MB) is bigger
than the typical malware we observe daily since all necessary libraries are linked statically
within a Go-compiled binary. It is last seen downloading from softstock[.]stop domain.

Warp Loader

Stealers are commonly distributed through various means, such as email attachments,
malicious downloads, or exploit kits. They can have severe consequences for individuals and
organizations, potentially leading to identity theft, financial losses, or unauthorized access to
systems.

Fig. 1 – Infection chain

Fig. 2 – Static attributes

P. 04

Function

spam.tmpDir

spam.tmpFile

spam.TimeZone

Description

Create a directory in TEMP folder starting with the “dir” name

Create a file in the TEMP directory and write the current timestamp

Get file attributes

Number

1, 2

0, 3

4

Loading the binary in IDA for debugging doesn’t give us metadata, as it is stripped of debug
symbols, making the analysis difficult. Utilizing the GoReSym plugin to extract function
metadata, we can see that around 19 functions have been renamed. It contains the package
name “warp_loader_go” with spam and telegram functionalities.

Starting with the “main.main” function, it initially calls the function to trigger random API calls.
Based on a random number generated, “RandomApiCalls” executes the following three
functions continuously until number 9 gets generated:

Fig. 3 – Warp loader functions

P. 05

hxxps://searx[.]be/?q=%s

hxxps://yandex[.]com/search/?text=%s&lr=0&search_source=yacom_desktop_common

hxxps://en.wikipedia[.]org/wiki/%s

hxxps://www.bing[.]com/search?q=%s&search=Submit+Query

The following function called in the process flow is “SendRandomRequests.” It decrypts
the strings present, which perform random searches on SearX, Yandex, Wikipedia, and
Bing search engines. These are used to send requests randomly, as seen in the above
random calls, so it appears to be legitimate traffic.

Looking at the AES decrypt function, the 32-byte hex key
(ad47705ef93b3097868d0591d90a877a6c522d70853557ec7566cdd2f1e191ac) is
decoded and used to create a new cipher block for AES-256 decryption. This block is then
wrapped in GCM with a Nonce and Tag Size for decryption.

The first stage HTA file ‘d.hta’ present on the remote URL contains two files embedded
in it: a .NET module (preBotHta.dll) and a decoy file. This is similar to its usual HTA
stager in the infection chain, where it first checks the .NET version. Instead of directly
using the variables, this time, they are base64 encoded and later decoded during
execution, getting the same names as commented in the below figure.

Fig. 4 – Number generation for random API calls

P. 06

Later, it fetches details of the current user, decrypts and concatenates a few more strings
that are used to send an initial message to the telegram C2:

All the encrypted strings from “str.init” can be fetched with this simple IDA Python snippet
we made:

for funcAddr in idautils.Functions():

 funcName = idc.get_func_name(funcAddr)

 if 'str.init' in funcName:

 print(f"{funcAddr:#x}: {funcName}")

 for (startAddr, endAddr) in idautils.Chunks(funcAddr):

 for head in Heads(startAddr, endAddr):

 if idc.print_insn_mnem(head) == "lea" and idc.print_operand(head, 0) == "rdx":

 bytesAddr = int(idc.get_operand_value(head, 1))

 print(idc.get_bytes(bytesAddr, 64))

Fig. 5 – AES-256 Decryption of Strings

Chat ID

Launch Command

-1001963477498

New.launch

P. 07

Then it fetches the command from the chat using the “telegram.GetChat” function with the
chat ID. After verifying the return value, it downloads additional payloads using the
“telegram.DownloadFile” function. The random calls and requests are performed again before
downloading.

The “telegram.SendMessage” user function sends a message containing the hostname and
username to its telegram C2 bot. It utilizes “telegram.GetBase” to decrypt strings to be used in
the URL:

Telegram C2 Bot

Initial Message

URL for Telegram API

Private Bot Token

Get command

Get the file to be downloaded

Download path

/sendMessage?&parse_mode=HTML&chat_id=%s&text=%s

https://api.telegram.org/bot%s

6273916038:AAHnJC6VymoyKdR2Iq8CzH2-ZnzIcJQ0-w8

/getChat?chat_id=%s

/getFile?file_id=%s

C:\ProgramData\warp

Fig. 6 – Initial contact with Telegram C2 Bot

Fig. 7 – Spam calls before downloading payload

P. 08

Though the C2 bot was not alive during our analysis, we could find that it was downloading a
file named wd.exe in the ProgramData directory. We observed a GO binary being dropped in
the same directory is, in fact, the Warp Dropper.

After downloading, the spam functions are triggered again before executing the payload using
Cmd.Run().

Fig. 8 – Loader downloading the dropper

Fig. 9 – Spam calls before executing a payload

P. 09

Fig. 10 – Dropper functions

Fig. 11 – Dropper flow

The dropper component ultimately downloads and runs a stealer. It performs privilege
escalation and kills the antivirus solution installed on the victim’s machine. The dropper
utilizes the same telegram functionalities for C2. After using GoReSym, the functions are
renamed as follows:

Warp Dropper

Though the stealer is downloaded and run, both the binaries required for getting privileges and
killing AV are embedded in the dropper itself.

P. 10

It checks if the running process is elevated via the current user’s UID and, if failed, self-restarts
by dropping an embedded binary for UAC bypass to escalate privileges. The binary is decrypted
in a similar fashion seen in the loader component and executed from the ‘Program
Data\warp\uac.exe’ directory.

The executable used to elevate privileges is PE64 with compiler-stamp May 06, 2023 and the
PDB path leads us to a known UAC bypass trick. It uses RPC requests
(RAiLaunchAdminProcess) via ALPC (Advanced Local Procedure Calls) kernel feature.

C:\Users\root\Desktop\PR0CESS-main\UACBypassJF_RpcALPC\src\x64\Release\tyranid_app
Info_alpc.pdb

The non-elevated process created is ‘winver.exe’ to initial the debug object by setting the
necessary flag. The auto-elevated process designed is ‘computerdefaults.exe,’ which gets
assigning the existing debug object.

UAC Bypass

Fig. 12 – Dropping and executing UAC bypass binary

P. 11

The handle of this elevated process is duplicated to retrieve a higher privileged handle
by capturing the debug object retrieved from the debug event.

Fig. 13 – Creating non-elevated and auto-elevated processes

Fig. 14 – Duplicating process handle

P. 12

Fig. 15 – Sending a message to C2 with privilege info

Fig. 16 – Dropping driver file and executing it as a service

To kill the antivirus solution, an embedded driver file is dropped, which is a vulnerable Avast’s
Anti-Rootkit driver file that can terminate a given process. It is installed as a kernel service with
the following command:

This disabling technique was first found in 2022 and was used by AvosLocker and Cuba
Ransomware groups to terminate EDR solutions.

Meanwhile, a thread function uses CreateToolhelp32Snapshot winAPI to fetch the process list
and kill process PID using DeviceIoControl API.

sc.exe create aswSP_ArPots binPath=C:\ProgramData\warp\av.sys type=kernel

Disabling AV

P. 13

Fig. 17 – Killing process via PID using DeviceIoControl

Fig. 18 – Creating a scheduled task for persistence

It moves itself (dropper) into the ProgramData directory and creates a scheduled task. This is
done to persist it to execute daily at a specific time via cmd.exe.

The task name used here, “MicrososftSecureUpdateTaskMachineUA,” can be easily confused
with the legitimate update schedule of Microsoft Edge.

P. 14

Fig. 19 – Task Scheduled for persistence

Fig. 20 – Function Diff

This modified infostealer belongs to the malware family known as Stealerium, an open-source
C# project present on a GitHub repository. It has stealer, clipper, and keylogger features. This
year, various modified versions of this malware, like Enigma Stealer, have been discovered that
targeted individuals in the crypto industry. After analyzing the modified .NET sample using
BinDiff, we have found changes in a few modules present in this new Warp Stealer, with both
being 83% similar.

Finally, the stealer is downloaded into the same directory as ‘wst.exe’ and executed. After the
initial stealer report is sent to the C2, the stealer is deleted as the dropper component persists
through a system reboot and keeps it from getting detected.

Significant changes are the removal of Discord Web-hooks used for ex-filtrating information
stolen and string occurrences “Stealerium.”

Warp Stealer

P. 15

For sending data, the threat actor has added the same Telegram bot configuration used
in the loader/dropper component. Some modules have been disabled in this modified
version 2.0, like Clipper, Keylogger, and AutoRun.

The grabber module has added new files and folders that interest the threat actor.
Rust-based source code and maFile databases have also been added, whereas image
files have been removed completely.

Files and folders added:

Fig. 22 – Stealer Configuration Changes

Fig. 21 – Removed Stealerium details

.env

.gitignore

docker-compose.yml

docker-compose.yaml

rs

maFile

.git

.ssh

Dockerfile

README.md

P. 16

Other additions include fetching network cookies and local storage for the Chromium
browser. Multiple changes in Discord Webhook and Helper functions are also found.

Fig. 23 – Modifications in Grabber module

P. 17

The final Warp Stealer report sent to the Telegram C2 is shown below. Compared to the
original Stealerium report, this sends less data as some modules are disabled.

Fig. 25 – Report of Warp Stealer

Fig. 24 - Additions in fetching Chromium browser data

P. 18

Fig. 26 – Report of Stealerium

P. 19

Execution
Immediately after the execution, it creates a hidden directory in AppData/Local folder.
The name of the directory is by combining Hash+system information (username,
computer name, CPU name, GPU name, and system language)

The remaining features of Stealerium are described below:

Fig. 27.1 – Hidden directory creation

Fig. 27.2 – Naming the hidden directory

P. 20

Clipper
Gets clipboard information and will store it as clipboardText. If clipboard text matches
any of the wallet addresses, it will replace it with the attacker’s crypto wallet address.

Keylogger
It monitors the victim’s keyboard and saves keys in a log file in the keylogger directory
with the date and time.

Fig. 28 – Clipper module

Fig. 29 – Keylogger module

P. 21

Persistence
It sets a RUNKEY for persistence at the location

HKCU\Software\Microsoft\Windows\CurrentVersion\Run\

Defense Evasion

It delays the execution and sleeps for 10000 milliseconds to postpone its execution in
sandbox systems.

Delay Execution

Fig. 30 – Persistence mechanism used by the stealer

Fig. 31 – Delay execution module

P. 22

It delays the execution and sleeps for 10000 milliseconds to postpone its execution in
sandbox systems.

If any checks pass it generates a fake error message and calls a self-destruction
process.

Anti- Analysis techniques

Anti-Debugging

Anti-Virtual Box

Anti-Emulator

Anti- sandbox

Analysis tools

CheckRemoteDebuggerPresent() API

Checks with the keyword VMware, VirtualBox

Compares the system’s date and time

Checks for SbieDll, SxIn, snxhk,cmdvrt32

Checks for Processhacker, netstat, netmon, tcpview,

wireshark, filemon, regmon, cain

Fig. 32 – Anti-analysis techniques used

Fig. 33 – Generating fake error message

P. 23

Fig. 34 – Self-destruction process

Fig. 35 – Collecting saved Wi-Fi password from the victim’s system

Credential Access
It collects data from the browsers like Chrome, Firefox, and internet explorer

• From Chromium browsers, it collects information like saved passwords, card details,
cookies, auto-fill field information, and bookmarks.

• From Firefox browsers, it collects information like bookmarks, browser history, db
files, and cookies.

• From internet explorer/edge, it collects auto-fills, bookmarks, credit card details, and
saved passwords.

• From the system, it collects the username and passwords of WiFi networks and
performs scans to get information about the devices around.

P. 24

Fig. 36 – Sensitive data collection from different browsers

P. 25

Collection

It will check for the below strings. It will take screenshots and record keys when it
matches any of the below strings.

Financial details from

It collects data from the below crypto services

Sensitive information

Fig. 37 – Data collection from these social media accounts

Fig. 38 – Data collection from these financial services

P. 26

Fig. 39 – Data collection from these crypto services

P. 27

Gets system information

It tries to get system information from the victim’s machine like

In addition to the above information, it takes desktop screenshots and saves them as
DESKTOP.jpg

PublicIP

Username

CPU name

Date and time

LocalIP

Computername

GPUname

Battery details

DeafaultGateway

Systemversion

RAM details

Process list

Fig. 40 – Taking Desktop screenshot

Fig. 41 – System information collection from the victim’s system

P. 28

Porn detection

It will check if the system has adult content and takes a screenshot and shot from the
webcam, which will be stored in logs.

Fig. 42 – Porn detection module

P. 29

Conclusion

IOC

Warp malware combines a loader, a dropper, and a stealer. Multi-functional malware
targets users’ sensitive information from all sources, including system information. At
first, the attacker creates a telegram Bot account and inserts that token into the
malware. Later, the sample is sent as an attachment to the victim’s machine, luring the
victim to open it. Then immediately after opening, it starts its execution and downloads
a stealer, which is responsible for collecting all user data related to financial and
personal, including web camera shots. And later, all this collected information is stored
as logs which will be sent to the attacker through C2.

To mitigate these types of attacks, it is essential to maintain robust security practices,
including using up-to-date antivirus software, regularly updating systems and
applications, exercising caution while clicking on links or downloading files, and
practicing good password hygiene to safeguard our personal information.

URLs
hxxps://api.telegram[.]org/bot6273916038:AAHnJC6VymoyKdR2Iq8CzH2-ZnzIcJQ0-w8/send
Message?&parse_mode=HTML&chat_id=-1001963477498&text=

hxxps://api.telegram[.]org/bot6273916038:AAHnJC6VymoyKdR2Iq8CzH2-ZnzIcJQ0-w8/getChat?
chat_id=-1001963477498

hxxps://api.telegram[.]org/bot6273916038:AAHnJC6VymoyKdR2Iq8CzH2-ZnzIcJQ0-w8/send
Document?chat_id=-1001963477498

hxxps://api.telegram[.]org/bot6273916038:AAHnJC6VymoyKdR2Iq8CzH2-ZnzIcJQ0-w8/send
Message?parse_mode=Markdown&chat_id=-1001963477498&text=

hxxps://api.telegram[.]org/bot6273916038:AAHnJC6VymoyKdR2Iq8CzH2-ZnzIcJQ0-w8/getFile?
file_id=-1001963477498

hxxps://softstock[.]shop/download/Adobe%20Acrobat%20Update.exe

MD5 Description Detection

Warp Loader

Warp Dropper

Warp Stealer (Stealerium)

UAC Bypass

Avast Anti-Rootkit Driver

Trojan.WarpLoader

Trojan.WarpDropper

Trojan.YakbeexMSIL.ZZ4

Exploit.UACBypass

(legitimate)

ac941919c2bffaf6aa6077322a48f09f

fe08102907a8202581766631b1e31915

e1f6f92526dabe5365b7c3137c385cd2

b400973f489df968022756822ca4d76a

0a0bdd679d44b77d2e6464e9fac6244c

All Intellectual Property Right(s) including trademark(s), logo(s)
and copyright(s) are properties of their respective owners.
Copyright © 2023 Quick Heal Technologies Ltd. All rights
reserved.

Marvel Edge, Office No. 7010 C & D,
7th Floor, Viman Nagar, Pune - 411014, India.

www.seqrite.com

